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E Q U I L I B R I U M  OF A N  E L A S T I C  B O D Y  P I E R C E D  

B Y  H O R I Z O N T A L  T H I N  E L A S T I C  B A R S  

I. I. A r g a t o v  a n d  S.  A .  N a z a r o v  UDC 539.3.01:624.072.21/23 

A simple mathematical model of a structure consisting of a three-dimensional body and rigid 
carrying bars is proposed. The estimated characteristics are the deflections of the bars, their 
reactions averaged over the sections, and the subsidence parameters of the body. The problem 
formulated on the basis of asymptotic analysis comprises the bending equations of the bars, the 
equations of equilibrium of the body, and a relation between the reactions and the deflections 
of the bars. In this problem, in addition to the moment of inertia, another cross-sectional 
characteristic, namely, the outer conformal radius, is involved. The method of solving the 
problem and the ways of its generalization are discussed. 

I n t r o d u c t i o n .  In this paper, a simple method based on an asymptotic analysis is proposed to 
determine the stress-strain state of a three-dimensional elastic body joined to bars. Rajapakse and Wang 
[1] treated the problem of a loaded elastic bar embedded in an elastic half-space. Nazarov [2] and Kozlov et al. 
[3] constructed an asymptotic theory of joint to bars whose ends are welded to the surface of a body. For the 
structure under consideration, only an asymptotic solution of the heat conduction problem is known [4, 5]. 

The stress-strain state of the structure and the asymptotic form primarily depend on the relations 
between the moduli of elasticity of the bars and the body. For example, if the carrier bars are pliable, the 
body can be assumed undeformable in a first-order approximation, and the structure can be analyzed stage by 
stage. At the first stage, the deflections of the bars are determined; at the second stage, the body subsidence 
is determined; at the third stage, the stress-strain state of the body in proximity to the bars is refined by 
the method of boundary layers (the solution of the problems for a half-space with a cylindrical cavity [6]). 
Argatov and Nazarov [4, 5] showed that the problem is not "split" if the bars are sufficiently rigid. This most 
complicated case is studied below. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider a structure (Fig. 1) consisting of a body f~ and thin 
straight bars Q1 and Q2, where e > 0 is a small parameter which characterizes the cross-sectional dimensions 
of the bars. We denote the density, the Young's modulus, and the Poisson ratio of the body and the bars by p, 
E, and u and PY, Ej, and uj (j = 1, 2), respectively. All the structural elements are made from homogeneous 
isotropic linear-elastic materials, the engagement between the bars and the body being ideal (no the slippage 
and delamination). The structure undergoes small deformations due to gravity, the surface loads are absent, 
and the ends of the bars are rigidly fixed. 

We consider the problem of determining the.forces transferred from f~ to Q~ and Q2. It is assumed 
that  the axes of the bars (the straight lines xl = x~ and x2 = 0) are parallel to the Ox3 axis and lie in the 
horizontal plane x2 = 0. Moreover, the cross section w~ j of the bar Q~ is bounded by an ellipse whose principal 
axes have lengths 2aJ = 2~Aj and 2~ = 2~Bj and are parallel to the Oxl and Ox2 axes. 

D e t e r m i n a t i o n  of  t h e  D i s p l a c e m e n t s  o f  t h e  Bars .  The bars Q1 and Q2 of length 2ll and 212, 
respectively, are bent by the weight of the body. We denote the vertical deflection of the axis of the bar w j 
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by Q{. The moment of inertia of the cross section w~ about the Oxl axis is calculated by the formula 

i i  = ~r aj(bi~ 3 = r z A jB~.  

We assume that the bars and their parts which contact with the body are symmetric about the OXlX 2 plane. 
Using the engineering theory of bending, we represent the action of the elastic body on the bars by 

distributed loads (Fig. 2). The load pJ which is unknown at the contact segment is introduced into the 
right-hand side of the differential equation for wJ: 

: d4w j 
E j I ~ ( z ) = - q ~ - p J ( z ) ,  [z[ < hj; (2) 

EjI   4wi ~ z  4 (z) = --q~, hj  <<. ]z] < lj. (3) 

Here j = 1, 2, z = x3, and qJ is the weight per unit length of the bar Q J: 

qJ = za{b{pjg = r A j B j p j g ,  (4) 

where g is the acceleration of gravity. The ends of the bars are assumed to be clamped: 

dw3 ( + l j ) = 0 .  (5) wJ(4-1j) = O, dz 

Provided the point loads are absent, the functions w 1 and w 2 are three times continuously differentiable. 
D i s p l a c e m e n t  F ie ld  Far  f rom the  Bars.  Modeling the action of the bar Q{ on the body by the 

loads p1 distributed along a segment of length 2hi (Fig. 3), we arrive at the second fundamental problem of 
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the theory of elasticity for the region 120. Its solution is determined with an accuracy to a rigid displacement 
and the corresponding vector field can be represented in the form 

2 hi 
,,(~) = ~e~ + ~1 (~e3 -  ~,3e~) +/33(xle~- x~el) + F_, f p~(s)a(~)[~,;~(~)] ds, (6) 

i :  1 h, 

where as, ill, and f13 are the subsidence parameters of the body (the vertical displacement and the angles of 
rotation about the axes Oxl and Ox3), and G(2)[x; ~i(s).] is the Green vector function for the region g/0 which 
corresponds to a unit point force applied at the point ~'(s) -- (x~, 0, s) and directed along the Ox2 axis (see, 
e.g., [7, pp. 175-1831). 

The loads pl and p2 must balance statically the gravitational forces, i.e., 

2 hi 

i~l fhi pi(s)ds + F2 = _ . 

(7) 
2 hi 2 hi 

1 h, 

Here F2 = -P[fi01g, I~01 is the volume of fi0, and x~ and x~ are the coordinates of the center of gravity of 
~0, which differ slightly (by the order r from the coordinates of the center of gravity of fie. 

The following decomposition is valid: 

a(2)(x; ~) = T(2)(z _ ~) q_ g(2)(=r ~). (8) 

Here T (2) is the Kelvin solution for an elastic half-space loaded with the unit force in the direction of Ox2 
axis 

T(2) _ 1 -i t- v ( X l X  2 1 X 2 X2X3" ~ 
8~rE(1 + u) \ Ix[ 3 '  (3 - 4u) ~-~ + iz13, ~ ], (9) 

The components of the vector T(2)(x - ~) increase unboundedly as x --* ( ,  while the components of 
the regular part g(2)(x; ~) of the Green vector function remain bounded. The field (6) also has logarithmic 
singularities; therefore, it approximates the actual displacement field in fi~ only at a distance from the bars. In 
other words, the field (6) is interpreted as a distant field or external representation of the solution (within the 
framework of the method of joined asymptotic expansions). The construction of the internal representations 
in the vicinity of the bars Q~ and Q2 and matching of these representations with the external representation 
are dealt with in the following three sections of the paper. 

Disp lacement  Field in the  V i c i n i t y  of the Bars .  We introduce the coordinates (yJ, z) referred to 
the bar Q~ and the extended (fast) variables V/J in the planes perpendicular to its axis: 

y~ = z ~  - ~ I ,  y~ = x~ - ~ ,  ~ = ~ ;  (10)  

T] i = ~ - l y ~ ,  77/2 ---- g--ly/2. (11) 

In the coordinates (v/J, z), the semi-axes of the elliptic sections of the bar are equal to Aj and Bi, i.e., 
they are independent of the parameter ~. Furthermore, the problem is formulated in an infinite region, since, 
in the plane x3 = z, the external boundary fi~ is shifted at a distance O(~ -1) due to the change yJ ~ v/J and 
vanishes in the limiting case. The internal representation is described by the solution of the planar problem 
with the parameter z E ( -h i ,  hi) (the three-dimensional boundary layer is ignored in the zones where the 
bars emanate from the body): 

vJ(~,z) = ~ i ( z ) ~  + vJ(~)[w}~);(v/%~ + w}~)J(v/J)~], (12) 

where W (2)1 = (W} 2)j, W (2)j) is the solution of the problem of deformation of an elastic plane by a unit force 
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acting on an undeformed elliptic core 

~ =  ( ,J:  ( , { /A i )  2 + ( ,~ /Bi )  2 < 1}. 

The explicit form of W ( 2 ) j  is determined by known complex potentials [8, pp. 316-318]; the vector W (2)j 
vanishes at Owi and admits the representation 

W(2)j(~i)= s(2)(~IJ/Rj) + O(1) as [riJ[---*oo. (13) 

Here S (2) is the solution of the problem of an elastic plane loaded by a unit point load directed along the axis 
of ordinates, and Rj = (Aj + Bj)/2 is the outer conformal radius of the ellipse with the semi-axes Aj and Bj 
(see, e.g., [9, pp. 18-20]). If ~ = (r r are the dimensionless coordinates, we have 

S(2)(r - 4~rE(1 - v) \ [ ~ ' f ' - ( 3  - 4 v ) I n  lr + 1r 

Owing to the term wJ(z)e2 and the vanishing of W (2)1 at Owi, the internal representation (12) agrees 
principally with the displacement field of the bar Q{, which is determined using the engineering theory of 
bending. At the same time, by virtue of (13), at a distance from the contact surface, the behavior of the vector 
(12) is characterized by the relation 

VJ(rlJ,z) = wJ(z)e2 +pi(z)S(2)(~ilRj) + O(1) as [r/J[ ---, oo. (14) 

The asymptotic terms in (14) must be joined with the asymptote of the external representation (6). 
Behavior  of t he  Externa l  R e p r e s e n t a t i o n  Near  the  Bars.  We substitute (10) into (6) and take 

(8) and (9) into account. The resulting expression for 7(z) includes, in particular, the integral 

hi pi(s)d s h~ pi(s)d s 
(15) 

- h i  - - 

We find its principal asymptotic term as [yJ[ _.~ O. We represent the integral (15) in the form of the sum [10, 
11] 

hi ds h i  

(7- 1 + + 
- h  d - h  d - . 

If the function iv / is smooth, the second integral is bounded as [yJ[ -+ 0 and the first integral is expressed in 
terms of elementary functions and has the asymptote 

= - 2 1 n  
dt 

_1 ~/(lyil/hj)~ + [(z/hj) - ~]~ ~ + o(1)  as ly;I -~ 0. 

The other integrals which diverge as [yi[ ..., 0 are transformed similarly. As a result, for the vector field (6), 
the asymptotic formula 

v(x{ + Yl,Y2, j j z) = (as - fllZ + fl3xJ)e2 + pi(z)SC2)(yJ/hj) + O(1) as lyil ~ o. (16) 

is valid. 
Match ing  of the  Externa l  and I n t e r n a l  Represen ta t ions .  Using the method of joined asymptotic 

expansions [12, 13], in relation (14), we pass from the fast ~/J to the slow yi  = e~/J coordinates. In the overlap 
region where the asymptotic representations (6) and (12) are applicable, we find 

yJ(e-~y;,z) =~J(z)~2+zJ(z)SC~)(uJ/(enj))+o(1), v~R~ <<. ly~l < 2 v ~ R j ,  e--*0. (17) 

We compare (16) and (17). In order that the expressions on the right-hand sides of these formulas coincide, 
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it is necessary and sufficient that the equality 

a2 - fllZ + ~3x~ + (1 + v ) ( 3 -  4u) ~ ( z ) l n  hj 4~rE(1 - v) ~ i  = wi(z) ([zl < hi, j = 1, 2) (18) 

hold. Thus, the equations of the problem have been formulated. 
Discuss ion  of  t h e  Equa t ions  of  t h e  P r o b l e m .  The asymptotic solution of the initial problem 

involves the unknown functions w i and i v/ (j --- 1 and 2) and the parameters a2, ill, and/33- These are found 
by solving a problem that  comprises the differential bending equations of the bars (2) and (3), the boundary 
conditions (5), the equations of equilibrium of the body (7), and the governing functional relation (18). 

Equation (18) involves the large (as ~ ---* 0) parameter [ lne[. Therefore, the parameters a2, t l ,  and ~a 
and the functions w i (j = t) are of the order [lne[. The terms on the right-hand side of Eq. (2) are of the 
same order if PJ = e-2P~ and p and p~ are independent of ~ [compare (4) with (7)]. Finally, relations (2), (3), 
(5), (7), and (18) form a unified problem only if the condition 

Ej = ~-4[ln~[-1Z~ (19) 

holds, E and E]  being of the same order [see (1), (2), and (18)]. If the bars are thin and the material 
is sufficiently rigid, the small parameter r is not excluded from the problem completely and an additional 
asymptotic analysis cannot simplify the problem, i.e., it cannot separate it into several problems solved in 
succession for each of the structural elements as in the case of pliable bars. If the moduli of elasticity of the 
bars exceed the modulus of elasticity of the body to a greater extent as is required by condition (19), the bars 
can be assumed to be undeformable, i.e., one can set wJ(z) = 0 for ]z] < l i and thus "split" the problem. 
First, from Eq. (18) with the zero right-hand side and from Eq. (7), the loads ~ and the subsidence are 
found. Then, after substitution of the calculated pJ into (2), the deflections w i are refined. In addition to the 
moment of inertia I~, the problem involves another important geometrical cross-sectional characteristic of the 
bar Q~ , namely, the outer conformal radius 

r j = gR i -- (a j + ~ ) / 2 .  (20) 

The outer conformal radius can be taken as the mean characteristic dimension of the cross section (see, e.g., 
[14]). 

Using (20), in the governing equation (18), we introduce the notation for the stiffness coefficient 

k~ = 4~rE(1-  v) 1 
(1 + v)(3 - 4v) ln(hi/r{)" 

The subscript r in the notation I j, q~, r{, and k~ can be omitted. 
Solut ion  of  t h e  P r o b l e m .  From Eq. (18), we find 

p J ( z )  = k i w i ( z )  - ki( 2 - t l z  + t3xi) ,  lzl < hi, j = 1, 2. (21) 

We ignore the weight of the bars. Substituting (21) into (2), we obtain the equation of the type of the Winkler 
foundation equation (see, e.g., [15, p. 265]): 

d 4 w i 
E i I i  ~ (z) + k iwi (z  ) = ki(a2 - t l z  + il3x{) ([z I < hi). 

Its solution can be writ ten in the form 

wJ ( z ) = 012 -- t l  z "~ /33 x j  "t- CJl cosh(gffz) cos (a~z) -~- C j cosh (eez) sin (aez) 

+Ci3 sinh(oez)cos(eez) + Ci4 sinh(aez)sin(aez), [z[ < hi, (22) 

where ~e 4 = k i / (4E j i j )  (for simplicity, the subscript j of ze i is omitted). The relation 

i ~ (z) = C~ cosh (zez) cos (aez) + C~ cosh (eez) sin (eez) + C~ sinh (a~z) cos (zez) + C~ sinh (a~z) sin (aez). (23) 
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follows from (21). Integrating Eq. (3) and bearing in mind condition (5), we have 

{ D{(lj + z) 3 + DJ2(lj + z) 2, -l.i ~ z <~ -h i ,  
w J ( z )  = Z ' l ( l j  - z )  3 + Z (lj - <.< t , .  

(24) 

The eight integration constants in (22)-(24) are determined from the continuity conditions for the 
function wJ and its derivatives of up to the third order, inclusively, for z = - h i  and z = h i. Generally, it is 
necessary to solve a system of eight linear algebraic equations with the right-hand sides which depend linearly 
on a2,/31, and/3a. By virtue of the principle of superposition, we have 

= 4, 2 + 42/3, + 43 3, (25) 
where 41, 42, and 43 depend on hi, 11, and 0ej. Substituting (23) into the equations of equilibrium (7), in 
accordance with (25), we obtain a system of linear algebraic equations for a2,/31, and/3a. After the subsidence 
parameters of the body are calculated, formula (23) gives the distributed loads, and formulas (22) and (24) 
give the deflections of the rods. 

Conclusions.  The constructed approximate solution is the more exact, the smaller the parameter ~. 
However, in comparison with other relations of the problem, the accuracy of the governing equation (18) and, 
consequently, the accuracy of the whole model is not high, since in the derivation of (18), we ignored terms 
of the order [lne[ -x compared to unity (e << 1). 

We shall mention the main drawbacks of the proposed asymptotic model and determine some ways of 
its generalization. 

1. The shape of the body 120 is not taken into account. To introduce the corresponding corrections into 
the governing equation (18), it is necessary to refine the behavior of the external asymptotic representation 
in the neighborhood of the bars [formula (16)]. For this purpose, information on the structure of the regular 
part g(~; ~) of the Green vector function (8) that depends on f~0 is required. 

2. The stress-strain state of the body in the zones where the bars emanate is three-dimensional and, 
obviously, it cannot be described by plane boundary layers. In these zones, it is necessary to construct three- 
dimensional boundary layers, i.e., the solutions of special problems of the theory of elasticity for a half-space 
with an undeformable cylindrical core; however, neither the explicit solution of this problem nor the theorems 
on its solvability are known. 

3. The governing equation does not take into account the cross-sectional form of the bars, and only 
the characteristic dimension 9f the cross section enters (18). To refine the model, one should calculate the 
subsequent term in the asymptotic relation (13). 
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